Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202316851, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214887

RESUMO

DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA "legs" on the motor body and RNA "footholds" on a track. Herein, we address the well-documented trade-off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg-foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three-fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single-molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high-performance DNA motors with promising real-world biosensing applications.


Assuntos
Ácidos Nucleicos , Proteínas Motores Moleculares/metabolismo , DNA/química , Nanotecnologia , Miosinas
2.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909543

RESUMO

Assays detecting viral infections play a significant role in limiting the spread of diseases such as SARS-CoV-2. Here we present Rolosense, a virus sensing platform that transduces the motion of synthetic DNA-based motors transporting 5-micron particles on RNA fuel chips. Motors and chips are modified with virus-binding aptamers that lead to stalling of motion. Therefore, motors perform a "mechanical test" of viral target and stall in the presence of whole virions which represents a unique mechanism of transduction distinct from conventional assays. Rolosense can detect SARS-CoV-2 spiked in artificial saliva and exhaled breath condensate with a sensitivity of 103 copies/mL and discriminates among other respiratory viruses. The assay is modular and amenable to multiplexing, as we demonstrated one-pot detection of influenza A and SARS-CoV-2. As a proof-of-concept, we show readout can be achieved using a smartphone camera in as little as 15 mins without any sample preparation steps. Taken together, mechanical detection using Rolosense can be broadly applied to any viral target and has the potential to enable rapid, low-cost, point-of-care screening of circulating viruses.

3.
J Phys Chem B ; 126(39): 7495-7509, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36137248

RESUMO

Molecular motors, such as myosin and kinesin, perform diverse tasks ranging from vesical transport to bulk muscle contraction. Synthetic molecular motors may eventually be harnessed to perform similar tasks in versatile synthetic systems. The most promising type of synthetic molecular motor, the DNA walker, can undergo processive motion but generally exhibits low speeds and virtually no capacity for force generation. However, we recently showed that highly polyvalent DNA motors (HPDMs) can rival biological motors by translocating at micrometer per minute speeds and generating 100+ pN of force. Accordingly, DNA nanotechnology-based designs may hold promise for the creation of synthetic, force-generating nanomotors. However, the dependencies of HPDM speed and force on tunable design parameters are poorly understood and difficult to characterize experimentally. To overcome this challenge, we present RoloSim, an adhesive dynamics software package for fine-grained simulations of HPDM translocation. RoloSim uses biophysical models for DNA duplex formation and dissociation kinetics to explicitly model tens of thousands of molecular scale interactions. These molecular interactions are then used to calculate the nano- and microscale motions of the motor. We use RoloSim to uncover how motor force and speed scale with several tunable motor properties such as motor size and DNA duplex length. Our results support our previously defined hypothesis that force scales linearly with polyvalency. We also demonstrate that HPDMs can be steered with external force, and we provide design parameters for novel HPDM-based molecular sensor and nanomachine designs.


Assuntos
Adesivos , Cinesinas , DNA , Cinética , Miosinas
4.
Nat Nanotechnol ; 17(5): 514-523, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35347272

RESUMO

DNA has become the biomolecule of choice for molecular computation that may one day complement conventional silicon-based processors. In general, DNA computation is conducted in individual tubes, is slow in generating chemical outputs in response to chemical inputs and requires fluorescence readout. Here, we introduce a new paradigm for DNA computation where the chemical input is processed and transduced into a mechanical output using dynamic DNA-based motors operating far from equilibrium. We show that DNA-based motors with onboard logic (DMOLs) can perform Boolean functions (NOT, YES, AND and OR) with 15 min readout times. Because DMOLs are micrometre-sized, massive arrays of DMOLs that are identical or uniquely encoded by size and refractive index can be multiplexed and perform motor-to-motor communication on the same chip. Finally, DMOL computational outputs can be detected using a conventional smartphone camera, thus transducing chemical information into the electronic domain in a facile manner, suggesting potential applications.


Assuntos
Computadores Moleculares , Lógica , DNA/química , Fluorescência
5.
ACS Nano ; 15(5): 8427-8438, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33956424

RESUMO

Synthetic motors that consume chemical energy to produce mechanical work offer potential applications in many fields that span from computing to drug delivery and diagnostics. Among the various synthetic motors studied thus far, DNA-based machines offer the greatest programmability and have shown the ability to translocate micrometer-distances in an autonomous manner. DNA motors move by employing a burnt-bridge Brownian ratchet mechanism, where the DNA "legs" hybridize and then destroy complementary nucleic acids immobilized on a surface. We have previously shown that highly multivalent DNA motors that roll offer improved performance compared to bipedal walkers. Here, we use DNA-gold nanoparticle conjugates to investigate and enhance DNA nanomotor performance. Specifically, we tune structural parameters such as DNA leg density, leg span, and nanoparticle anisotropy as well as buffer conditions to enhance motor performance. Both modeling and experiments demonstrate that increasing DNA leg density boosts the speed and processivity of motors, whereas DNA leg span increases processivity and directionality. By taking advantage of label-free imaging of nanomotors, we also uncover Lévy-type motion where motors exhibit bursts of translocation that are punctuated with transient stalling. Dimerized particles also demonstrate more ballistic trajectories confirming a rolling mechanism. Our work shows the fundamental properties that control DNA motor performance and demonstrates optimized motors that can travel multiple micrometers within minutes with speeds of up to 50 nm/s. The performance of these nanoscale motors approaches that of motor proteins that travel at speeds of 100-1000 nm/s, and hence this work can be important in developing protocellular systems as well next generation sensors and diagnostics.


Assuntos
Ouro , Nanopartículas Metálicas , DNA , Dineínas , Movimento (Física)
6.
Angew Chem Int Ed Engl ; 59(24): 9514-9521, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32017312

RESUMO

Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure-function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance.


Assuntos
Biomimética/instrumentação , DNA , Proteínas Motores Moleculares/metabolismo , Fenômenos Mecânicos , Movimento (Física) , Fatores de Tempo
7.
Langmuir ; 33(33): 8140-8146, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745890

RESUMO

Though surface modifications of organic thin films dramatically improve optoelectronic device performance, chemistry at organic surfaces presents new challenges that are not seen in conventional inorganic surfaces. This work demonstrates that the subsurface of pentacene remains highly accessible, even to large adsorbates, and that three distinct reaction regimes (surface, subsurface, and bulk) are accessed within the narrow thermal range of 30-75 °C. Progression of this transition is quantitatively measured via polarization modulation infrared reflection absorption spectroscopy, and atomic force microscopy is used to measure the thin-film morphology. Together, they reveal the close relationship between the extent of the reaction and the morphology changes. Finally, the reaction kinetics of the pentacene thin film is measured with a series of adsorbates that have different reactivity and diffusivity in the thin film. The results suggest that reaction kinetics in the thin film is controlled by both the reactivity and the adsorbate diffusivity in the thin-film lattice, which is very different than the traditional solution kinetics that is dominated by the chemical activation barriers. Combined, these experiments guide efforts toward rationally functionalizing the surfaces of organic semiconductors to enable the next generation of flexible devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...